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ELECTROMAGNETIC SCATTEPJNG BY

CONDUCTING BODIES OF REVOLUTION

SOLUSTION USING

SUB-.DOMA1N AND ENTIRE-DOMAIN

BASIS FUNCTIONS

by

J. Joseph and R. Mittra

Electromagnetic Communication Laboratory

University of Illinois

Urbana, Illinois

I -

* Abstract

In this work, the problem of electromagnetic scattering of a plane wave incident on a

ýnmducting body of revolution is considered. The body is assumed to be situated in infinite

homogeneous space. The problem is solved using the method of moments. Use of two

different types of expansion and testing functions, namely, sub-domain type and entire-

domain type is considered. Results obtained using sub-domain pulse functions and entire-

domain Gaussian functions are presented. The relative advantages and disadvantages of

each type of basis ft1flCtiOn1S is discussed.

..............................
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INTRODUCTION

The problem of electromagnetic scattering by a

conducting body of revolution, illuminated by a plane wave

incident from some arbitrary direction is consid'bred. The

geometry of the problem is shown in Fig.l. The body is

generated by the arc C revolving around the z-axis.

The objective is to compute the scattered far fields and

radar cross-section 3f the body of revolution. In this paper,

- the electric field integral equation which enforces the totalE
tangential electric fields on the surface of the body to be

•. .'.zero is used to solve the problem. First, equivalent electric

currents are postulated on the surface of the body. The

scattered field is expresse-. in terms of these equivalent

currents. The electric field integral equation is then solved

numerically to obtain the surface currents. The surface

"currents are then used to obtain the radar cross-section and

far-fields,

The numerical solution of the integral equation is

_-obtained using the method of moments. F'irst, the surface

currents are expanded in a set of appropriate basis

1% oct ions The resultirg equat:ion is then tested with a set

of weighting functions to obta n a matrix 0(0ation wit h the

'-oef ficion t:s of thf1 (.urrelts ,as ulnknown-•s

T' •--,i C r 1- ' t- s a , e OX ) I•1•e,(-1 In a F1" on i r sL 7 i s ' i I
k. •JYJ.~ 1I/ Llt. d.i (4•)) Y{(1fetIic~fn andl~ t. •-•.stwei with t~hi, o~n JI.gattLC3 o.f, tI-:

.*:' , if 1i d f r t (L71- c )iri:; . r s t-res Wt ir t. -i t : Kuii Jr'.4 I t Ihj

,<:f, i ('. J (.t " ir 1 ,1 i.ý imnt h1ý1i ni Ito;(( . Tht idvint.ljig t h1 101

I :[ 7. h]iil {l(510 ,:1:1 $() [ vs. ,S VO E17t 1 tsiii I 01 in! t ro 1 1 [ :' 1 10 Sfl•: •':•[•Il] iL nI

<" - .'. .. . . . . . . . .,, . . . ,. . .. . ..¶ . ... ... ,.. .. . .. .. . . .,... ,.
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to a two dimensional problem and combine these solutions to

obtain the solution for the body of revolution problem.

There are several possible choices of the

expansion/testing functions in the t-direction(the axial

direction - see Fig. 1) for the current. In this paper, two

classes of expansion functions namely, sub-domain and entire-

domain functions are considered. Two programs, PBOR and GBOR

have been developed. PBOR uses sub-domain pulse basis

functions and testing functions. GBOR uses entire-domain

Gaussian basis and testing functions. The advantages and

disadvantages of Eoach of these approaches as well as some

numerical examples are presented.

--- IL

-. 4
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FORMULATION

Consider a conducting body of revolution situated in

homogeneous space as shown in Fig. 1. The body is illuminated

by a plane wave incident from some arbitrary angle. The

total electric field at any point in space is the sum of the

incident field and the field scattered. by the body. The

total field tangential to the surfdce of the conducting body

is zero. That is,
ý5p

ttal = nX[-inc 4  scat] (1)

on the surface of the body. In (1), Einc is the incident

electric field, Escat is the scattered field, and n is the

outward pointing normal unit vector on the surface of the

scatterer (see Fig. 1) . Using eqoivalence principle, the

scatterer can be replaced with a surface electric current J

radiating in homogeneous space. The scattered field of (1)

can then be expressed in terms of these equivalent currents

Eýý"' (r) = -j o)A(r)-V(D(r) (2)

with the potent--ials of (2) givern by

A( r) - JE [ 'G (r, '{s (3.)

r, d

-- Ip ( r ,')(r, r')dIS ,( )
*1 V7U J J,

I%
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In (3) and. (4), L and E are the parameters of the

homogeneous space and S denotes the surface of the scatterer.
The charge density p(r') of (4) can be expressed in terms of

the surface current J as

S= 2 (5)

The subscript s on the divergence operator denotes surface

divergence. The homogeneous space Greens function G used in

(3) and (4) is defined as

-JkR

G(r, r(6)
eR

with R being the distance between an observation point

r=(p,O,z) and a source point r'=-(p',•',z') . In cylindrical

cDordinates it is computed as

rDI -b Y" 4 ý +p, -2pp cos,( --O')+(z-z ) (7)

F. r-r'

Ncw we ca.n combine (1) throuqh (7) to get an integra.i

e- equal ion as shown below.

~ý l -VfE{l n"<4 2 ~ C, r r ) S +V [ V ,-J (:r , G ]L r ') iS 'l

(,IllJ r l t, c ll t 1 ,-o-

,0

Ol l I i I - r I .i ( I -1 - (i I: l,

• •iJ :: ;<t.7 (A)
Pi ý 1 ~ c , ' 1 ' I

C'j
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Here , is the unit vector on the surface of the body, in

the cylindrical coordinate system of Fig. 1, and t is a unit

vector on the surface of the body such that (n,O,)t) form a

right hand triad. The incident field Einc of (8) also can be

expressed as the sum of its 0 and t components. Thus (8) can

be written in component operator form as

SE inc 21

The Pij's are integro-differential operators operating

on the appropriate components of current. These are obtained

by computing the dot product of (8) with appropriate unit
vectors and separating out the JO) part and Jt part. The

explicit expressions for these operators are shown below

1~in s in-y cos(O'--4)) + cosy cs'Yjs.-:dS'

4-r f - , i,)
4.S

w+

• -.- .!., "



6
=(jO)$= r r JIcos(4O'-O)GdS' + 4 (J)GdS

S s1

in these equations, the primed coordinates refer to the

source points on the surface of the scatterer and the

unprimed coordinates refer to the observation points. The

angle *y is the angle thie tangent vector t makes with the axis

cf the body. This angle is taken to be positive if the

tangent vector points away from the axis of the body and

negative if it points towards the axis.The surface divergence

- in surface coordinates given by

. P---'' (P'J) +P

has been used to obtain (11).

To obtain a solution for the unknown currents Jt and JO

of ,11), the method of moments is used. The first step in

the soiutton procedure is to express the current using a set

,)I suitable basis functions as shown below.

J(te) $ 4J 0 (t, ) + tJ,(t, ) (12a

_ .N

SU( ,',)e m + E ,T" JJ')e b(

0t
",.' 2 7cp'

-tr t lit-he J'!; i a r-, t he unknown ( ef f i "iflt S of :i rre lt. jet

N.o , .ind Nt are the ruriber t.)f Iass i

*•,._': " i.." ,•+, \,x 1ri JI@ and ,i t r -. iv)• t, i<l',. l(m: )f

"., "
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• ~ ~ ~ 1 P,, ,Jn Tin

I= 2 tpJt (12d

The reason for solving for Itmjn rather than Jtmn will be

discussed later.

In (12), the azimuthal variation of the currents has

been expanded in a Fourier series. The basis functions used

for expansion in the orthogonal (t) direction are denoted by

the U's. These basis functions can either be sub-domain or

entire-domain basis functions. In this paper, one of each

kind is considered. Sub-domain pulse basis functicns with

the necessary derivatives approximated using finite

differencing and entire-domain Gaussian basis functions are

considered.

Next step in the solution process is to test the

equations with a set of suitable weighting functions to

obtain a matrix equation. Following Galerkin's method, we

test with the conjugates of the expansion functions. That

is,

q -i (3a
i " T~Pq -q -j• Uq(t)e-Jp

= T'e = U, 4O, ",t (13b)

= Te

(I2a) is used to test the first row of (10) and (12b) is used

t , teft the second row.

To obtain the expressions for the matrix elements, the
" . (;reens function G appear-ing in (11) is expanded in a Fourier

e r i e s as shoWrn b.iUlow.

* 1 X' r(•- •,)

,'R 2z ...
- / 'J (1, a%

V. ++, .+,•,;,.++.+...,'. +.+. ++ , • . , ,+"+ . ++."+.",,,+ +,,,+,. ,++,r:. + ,>. ,•+, + " + + 4 • % '

S.. .I"" + ' .. . . + - : , , - +i . , ,- . + + .-. ., .



where

Gm e cos(mn) d% (14b)M R

with R defined in (7) with (¢-•') replaced with •.

Testing (10) with (13) now decouples the equations for

various azimuthal modes m. The integrations in 0 and 0' can

be carried out analytically. The integrations in t and t'

must be done numerically. Also, the Greens function Gm is

an integral. Thus a -three dimensional numerical integration

is required to obtain the matrix elements corresponding to I.

The generating arc C in Fig.l over which th• t and t'

integrations are to be performed are in general arbitrarily

shaped. For computational purposes, this curve is

approximated as linear segments connected end to end as shown

in Fig. 2. Then, the integrations in t and t' must be

carried out over each of these segments. To reduce the

computational] effort, we can approximate the t integral by

evaluating the integrand only on one point per linear segment

of the generating arc. This is equivalent to doing point

matching wben the testing function spans only one linear

segment, such as is the case when pulse basis functions are

used. Since this integration is carried out over the

%i -incident field ,which is a smoothly varying quantLty, this

approximation does not introduce significant error if the

scatterer is modeled with sf•fficient number of linear

segments. The resulting expressions for the various P's for

azimucthai mode m are given below. The first summation is

over the field segments and the second summation is over the

solrce seqmenL sThe tot3l. number of li near segments Js F and

the. s'th linear segment extends from t s to ts

S1

6ii

::. . . . . . . .
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(.1 n w~l I Atf T q(t -1 / 2 ) sin ^f,

Fsin l dt'u n(t.,) G,, 1+(tt J/2 dt'U n(t ~ ~ 1 tfi/)

S=1 ;-I

041 s-it

"f1 S= F-

N'At -~[~tf/21N dt' d-[U'(ts1)1 Gm,(tf-1/ 2

47 =1) dt S= fJ _ dt'

n='!,2, Nt (15a)

S. F

P12  = 4 2 . At f T~tf-1 / 2 ) i

F d t

I fTj(t)] J5
'

S~1 S-1 s -i

iI ,2,"*,No (1 5b)
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F

=l SnP &tf Pf -1/2T 4 0(t --1 / 2 )

rI S

F Fd

M7o~~ dt
4 s=.L 1 :f t

q lrr=*,I

n = ,2,*..Nt (15 C)

F

U ~2 j~3 =]4 1 At, Pf-1/2 /~t.1 2 )

ft, {I dt PUn(t S) Gm+l(tf-1/ 2 ) + J - dt P'Un(t s) Gm'If-12

.2 F F

qq n ,,41

n 1 ,2,"-,N1 o (I 5d)

N.Te i nt1:E.gral1s o f (15) have a s ringu 1ariALt y in the

inteqrand when the source point coincides with the field

point . For a discussion of the handling of the singtilar

terms, see [2].

As discassed earlier, the basis functions)nS anci tit cas)

be e-i~ther s-ub-do.'ma in or erit re-domain funct ions. Ir the riexl.

sect ic i, pulise bas is funct ions whiich are of t~he silt--domaill
4

type is, corlsider(!d.

I



Sub-domain pulse basis functions

Fig. 3 shows the arrangement of pulse basis functions
used in this paper. Po's are used for the 0 component of

current and Pt's are used for the t ccmponent. They are

defined as follows

(ý_ 1- t .•t •ýts'

1U(t) = P(t) = (16a)

S0 otherwise

1 is-i/2 t- ts-1/2

un(t) = s(t)=(lb

10 otherwise

Observe that the Uos is confined to the s'th linear

segment. Thus there are a total of F of these basis

functions. That is, No = F. On the other hand, we have

"" chosen the UtS to straddle over two linear segments. There

are a total of F-I of these, which implies that Nt = F-1.

The first half of the first sub-section and the last half of

the last sub-section is assumed to have zero t-directed

current. This is not a correct assumption if we are

considering the current densities for a scatterer such as the
one in Fig. 1, However. je can solve for It t 27tPJt, rather

than Jt. 1tself. In this case, It will be close to zero near

the u),iii ts where the generatrng approaches I the axis, by

'.'virtue of P appro)ach ing zero. This is t ,e reason for

2 )



12
expanding the currents using It rather than using Jt in

(12c) .

As mentioned previously, the testing functions used are

conjugates of the expansion functions. Since the pulse basis

and testing functions are confined to a small region of the

generating arc of Fig. 2, most of the terms of the double

summation of (14) will drop out. The resulting expressions

can be simplified as shown in (18) . In obtaining these
expressions, the derivative of Ut has been computed using

fini-e differencing as

(u nt - O(O-o W)(17)a t 0 .5*(Atn+ 1 +At n)

As mentioned earlier, the t integration is performed by

doing one function evaluation per linear segment. This turns

"out to be one function evaluation per testing function.

These function evaluations are done at the center of each

testing function. The expressions for the elements of the

moment matrix for azimuthal mode m using pulse basis

functions are given on the following pages.

0

N.I • ---



=i ý:L~2~(Atqiy, inn Wt- 2 nItqn12 n

+ wxs,(Atql yq)siflyn+i' {V4(tnftn+1/ 2 ,tqIM4'1)+i(tn,ltn+1/2,tqrml)l
Bic

+ 4 wXc(Atq,Yq) {COSY,'W(tn- 1 / 2 ,tn,tqlM) + c-OSytn+l'NJ(tnltn+1,2,tq,M)}

IN {IV(tnltn+lltq+1/2,M)11J(tn't,tn.iltc-1/2Irn)l4 7tO3At n+1

+ j Wt,'lnt+/,)Vt-~ntt-/f) (18 a)
4 RCi)EAt n

n=l, ,F-1

q1-,",F-1

qn -cog.
P12 4- r.(t',{'(nlt. "n±')-'V?(tnltntqifmld)}

+ -- ý{M(tnfl1 tntq-1/2,m)-4J(t-Jl,tfl~tq+1/2,m)1 (1l8b)

2~ , F
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p Cqn J..A)tqs iflyfl{ W

=c Bi-1/ 2 ' tr t(ý-1/2f~ - I( 1 ..~l,

+ IOotqSlflyn+l'f~nt+/,,/'+- ~nt+/,q,12m.3)

______________ _ 41C L'-'- q1/ t.

n=1,"F-i (1 qC)

q=1, ,F

j~ jC O A t q W t n - -1/2 1 M 1 d

n2i, F

The various quantities used in (18) are defined in (19)

and (20) below, and in Figs. 2 and 3.

.. i. L 2

xvM,~ G,"rn J~ (tq tdti (19)

wi th G nj d e fi.ne d in (14) a nd (7) .P (nh? X' sf (18) a.el e f in ed

* as

%'i-



A+At qs in'y, 15

Xs(Atq, Yq) = AtT.lflI q (20a)

2

X,(Atq7q )=At q+ I C O (fq+l +At qC O Sq (2Ob)
2

Entire-domain Gau ;ian basis functions

Each function of an entire-domain basis set, unlike the

sub-domain basis functions, span the entire structure. The
example used here is Gaussian functions as shown in Fig. 4.
The n'th basis function is centered at Ln (the mean) The

"thickness" of the basis function is determined by its
variance On. The mathematical expressions that describe the

functions of Fig. 4 are given below.

-0 '- tL k- t •- to

2
e tL

un(t) = Ot) = '(t) = e- 5 t_ O t~ (20)

I e-°R t1 < t • R

* iIn these expressions, the *ýp_)antity R. is the length of
the . generating arc. tL and tUj are point,, on the generating

arc, t1 is near t=0 (the beginning of the iene ratinCi arc)

a and tU; is rear t=R (end of the gerierating arc) The Las iS

furicti ors are fiorced to go to zero I i.nearly between tLI and 0,
•uJ~~~l "itw-rntl ad R.

Th< Li Ls t i()fls l.5sŽA r o;-both *Jt , 11i J ,_•e , i

ir il ar _1 (liv 1 iri (20) Howev-r, fto r the rsmber t)f

t. - .' u u O .. is two incre thall that_ 1sed for Jt 1he [:e

V.
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extra basis functions are also Gaussian basis functions

described by (20) and are centered at t=0 and t:=P.

The derivatives of basis and. testng funoctions with

respect t required in (15) are easily computed from (20) and

are given below.

2

_ e ( nt, • t 5 t~

tL )

( gn _R-t U) )2
-0.(< (-)

e 0 .5 -o to u t -<
e---) (R-t,)

SUnlike the sub-domain basis set where the number of

basis functions was linked to the number of linear segments

used to model the scatterer, tfle number of entire-domain

basis functions used have no relationship to the number of

segments on the generating arc. However, since the t

integrat ions in (15) have been performed by evaiuatinq the

L'<iltegrand at one pfo Lrit per linear segment, the accur'acy Of

_"ompo tat ions are dependent on the number of linear segment3.

--ic n :•• , (: fun.'ction of the [l.i it; set extenids over :

-"lit ir ;pjn ( V)f e t-catter i s triictur,, t hO i nt g t:..:•e i 0115

_ 1• , Ili i r fd I t) )btl I n th- expross os for ' s must to i"_•o r j

*,. '• I r a g s l tf tt o > r i a > l i t l i t , (s-iin q t nt ,.t l c u (- - d a m s . 1

itt, It it ,rIi r I ý;,tts Pair 1!- i Ii:q 't hta' ýI t:.C M o1

20K

-" ' , ! : ' ,~ [ [ , : t l >~l5• • • .; 1 1 •: l a ] • • • •ŽX $,V "<:\ - FjIK"" ',, ' i ". \ \:, •1 , V L t
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by sol.v-ing a smaller matrix than would be required if sub-

domain basi.s set were used.

'U

Zncident field

An arbitrarily polarized incident plane wave field Einc

, is expressed as the sum of two linearly polarized plane waves

as

-E Einc = c6i nc + Ejnc inc) e-jkn, r= (•8 O + ~ je(22)

where

Scoso + COSOi, in"-- s,.ninOnz (23a)

s i.c -= is;, x + Cos inc( (23b)
nc Onc .. .. , .Oinc^ C0_ incz

n = -- sinOlfCCOS ncx - sinOlnCsin• y -- co Z (23c)

r = pcos, x + psino y + zz (23c)

12 "PThe elements of the forcing function vector in (10) are

!'ollrld by finding the component of the i4n ci dent fieldIA of (22)
Ltingential to the surface of the scatterer and test ix g wi 1

t-he furct ions of (13) The resulting express-ions roi, t-he

a mu.: h,�a i. mo•e m a.rc showon he Iiri n e of p re t h.es

xtrsto Beslfanc-,-ion of the fir~st- k~ind of ord.er rni.
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Inc Inc - -0ncl P -/ ___ f12ej q1/ ,(InC.
Et 6 qE 0  7Ee~m pTq(tf,)ii1/CS

L CS co 's inlyf.{ jm +Bmni(kpEI /2 s t innc )+j II-IBm-3 (kpf-.1 / 2 S inOiO"-)}
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Summation over the modes

The expressions for the matrix elements and forcing

functions given in (15) and (24) are for a single azimuthal

mode m. To obtain a solution to the scattering problem, one

needs to sum over a finite number of modes from --M to M. The

value of M is determined by several factors such as the size

of the scatterer and the angle of incidence of the
excitation. Usually the fatter (large p) a scatterer, the

larger the number of modes required. When the excitation is

axially incident, the only modes excited are 1 and -1. The

farther the excitation is away fron the axial direction, the

more the number of modes required tc obtain a solution. A

rule of thumb given by [3] is

M=- kPmax3 in -+6

where Pmax is the maximum radial dimension of the scatterer.

This rule is valid only if kPmaxsilo~inc is greater than about

3-

The expressions for the matrix elements and the forcing

Stifncltions depend on trni mode number m. This dependence .is

11w(1h t ha, the f ol IIwinq relati tonsh ips between the moment

flt "it ix ct the p'2 ýit iye m(Ae2 and thote c)r respon(diing

Iit-J.1i 1 V- ,%it' ,Ii I

, L[. fr" p: 1j.: P ,'

! A..A ~
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r Inic 0 nc1I° - -E ,
L -E-MJ

I
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In the above, the superscripts denote the component of

incident field and the subscripts denote local coordinates on

the scatterer. This relationship between the forcing

functions and matrix elements of positive and negative modes

lead to the following relationship between the coefficients

of equivalent current.

r inc 1 n
i IncI 0 In

tM j t-M

IA nci [ Inc1

L" L j J I-

Again, the superscripts denote to the component of

incident field that is producing the currents. Because of

this relationship between coefficients of current for the

positive and negative modes, we need to calculate the

ciuirrents of the pos it yve mo(Js.

Computation of Radar Cros3-section

Tl~i~ SCcAtt ý--Žed f ie is (-"an be ('omputk'C ciS th. IadIati o
uI Ie,' tie d t rcrf L:hE, u. A]ivai ert curt ..•: e c"'ir remts U]s ing

(51' •:octy t li, t e' xpr.ess 11)5.. tsr this field sca be

hr'a

A.

- ~ r W =ME%.~~i~
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r•,,

nm.m

where Er is the field due to a test source located at the
Sobservation point with its amplitude adjusted to produce a

unit plane wave at the origin, and polarized in the direction

, !,•• of u. Thus,

• I- E= = ue- jk'•" (26)

SFor the moment solution where current is given as a

summation of the product of the basis functions Bn and

• •' corresponding coefficients In, (25) can be written as

j -jkR

-" ": E'u = -jtOg e [R][I] (27a)

i• where

'i<
•[" the integration being carried out over the surface of the

q scatterer. In tile above, (27b) has exactly the same form as
"• that u.•d for the forcing function vector discussed earlier,

he only dif•:'• • .
S..... :.fence bexng the basis fun,_tions Bn re[]] acing

S['[ the testing functions T•. Since we are using Galerkin's_--v
-p L-3
'4 pr:ocedure, the basis and testing functions are conjugates of

S[k' one another. Hence the expressions for the vector [R] are
•!] "' obt.i.ti.ned from the expressions for klte fc•cing f!ur•ct :i on qivon

"" i rl (24) by rep]acirlg t-he apq /es 0inc and •inc with the

g •:{)cre,:ponding :,b:;envat.i.:.)n angles and changing t he mode number
,w.•' m t:•) -m I o <.•('.<-.,ur t f•,r- t:•..o co;,]ugation.

m i"•-

p,

i-

I
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Observe that in (24) we have broken up an arbitrarily

polarized incident plane wave into two linearly polarized

"plane waves. In terms of these components the scattered

field components can be written as

Eo] - -jWO Le - :][s0 so E01 (28e)

ES 4 R -e 4]

The elements of the scattering matrix are obtained ny

summing the contributions due to the various azimuthal modes

as

= (29)

uv being 00, 00, 00, or 00. The terms under the summation are

obtained as shown below.

s j [[PR , m] JR 1 ml] [ (3 0a)

'R Iir< m2] E m K (301,))Mj
02.' PJ¢ M

* VTh& el1ement s of the various R ' .s Lsed he re are() t. in,.

f i ic2T t h, _xpr-essJolis fo,( tLhe E's ot (21) by repi•iuing {iriQ

d 1 (1 r wi wit.- the (:o r s j)orld.i. nI 1 , , o, r vit.t i T.i, i I t,•: i

I .1 •, c(. i rn'; tI III d ()(ie Il lim -?., fr f- t.() -- m ,. 0 1 ,i- h kiý 1 0

9 Lac:; Vch, i oe, n cor~u ~t•::•, the r-adar 7rO' S-,.;Q<'I ion fl-el t

~ ~ .- -. - -P- -s 0
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Yuv 4tr2 --- (3.1a)
incEv'

is easily computed. Using (28), this can be written in terms

of the elements of the scattering matrix as

auv = 4t suv12 (31b)

This can easily be extended ([4]) to arbitrarily polarized

transmitters and receivers.

I..

=__.2
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NUMERICAL RESULTS

In this section, sample results obtained using the sub-

domain basis set is compared with those obtained using

entJre-domain basis set.

First, a conducting sphere illuminated by a plane wave

polarized in the x direction and travelling in the -z

direction as shown in Fig. 5a is considered. The radius of

the sphere is 1 wavelength. The pulse basis set solution is

obtained by modeling the generating arc using 31 linear

segments. This results in approximately 10 sub-sections per

wavelength. (This is the recommended density for sub-

sectional basis functions) . This results in a 61 by 61

matrix equation. For the entire domain basis set, the

scatterer is modeled using the same number of linear segments

as in the pulse basis set, but the number of basis functions
used is 11 for it (and 13 for JO) . This is approximately 4

* basis functions per wavelength and is the recommended density
of basis functions for most scatterers when using entire

domain basis functions.

Since the excitation in this case is axial, the only
modes excited are 1 and -1. As discussed earlier, only the

positive numbered <iodes are computed, since the solution for

the correspond , I negative numbered modes can be

algebraically derived from the positive mode solutiors.

F Fig 6 shows the comparison of bistatic scattering

W ,cros53-section for this sphere compated using the two methods.

iThLe tvw() bo I ut-ioni are very V t * r cy cl e to eU acl C other T ab l i

'J. 'orupares t ne comriputation t imie0s requi ed for, ti chi , .nt hod. The

time used by th .. ý .l iirse- i. adou••t . rwi ce V"it

('10i refo r 1-he szul, -dcwricutj i p1 ugrai dii

S4.
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Fig. 7 shows the comparison of bistatic scattering

cross---section of the open-ended cylinder problem shown in

Fig. Sb. The cylinder is 4 wavelengths long and the matrix

sizes used follow the rule of thumb of 10 basis functions per

S!wavelength for sub-domain case and 4 basis functions for the

entire domain case. Again, as illustrated by the numbers in

Table 1, the entire domain program results achieves a savings

in the matrix size, but at the expense of more computer time.

4

4

'Nv

V

K5
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DESCRIPTION OF PROGRAMS

TiLe: programs, referred to here as PBOR and GBOR have

been developed to solve the conducting body of revolution

scattering problem. PBOR uses the pulse basis set and GBOR

uses the entire domain basis set. Both program require the

LINPACK library routines CGECO,CGESL and CGEDI. The input

data is read from a file. The file name is requested by the

program during execution. The output is written to two files

whose names also are requested by the program. Notice that

the input data required by the two programs are different.

The format of input data for PBOR is shown below.
F

NNFLDS, WVL

THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE, NOBS

OBST, OBSP

THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE, NOBS

OBST,OBSP

RHO, Z

The first line of input data should have the number of

td] Ierent excitations (NFLDS) and the wavelenqth of the

incident excitation (s). Following tlhis, there should be

1 ,1.'-DS) 1ineý's o t incidcnt field data with each linep having the

p. spht-r- ical coordinate angles (in degrees ) of incidence TfiPTA

Ari U ad PHI, t-he magnitude ( ETHET'PA) arid phase ( E P -1 L AS ) iin

dogr-ees, o f t he t hetra componerit a t t hi e a xci tat i on, he

m,i•iit!-ide (EPHI) and phase (EPH-P1tASE) irn de-jgr.os, af h .ho phi
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component of the excitation, and number of observation points

(NOBS) at which the far-fields and scattering cross-section

are to be computed for this excitation. After this, there

should be NOBS lines of observation point data with each line

containing the observation angles theta (OBST) and phi.

(OBSP) . Repeat this set of incident field data and

observation point data as many times as there are incident

excitations. Finally, there should be as many lines of RHO

and Z coordinate points as required to describe the

scatterer. These points are connected end to end using

straight lines to obtain an approximation to the generating

arc.

The format of the input data set for GBOR is shown

below.

NFLDS, NOBS, N, WVL

b THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE

OBST, OBSP

RHO, Z

This format of input data for GBOR is somewhat different

"from that of PBOR. The number N indicates the number of basis

-.4 functions that should be used. It should be such that there

are approximately 4 basis functions per wavelength. The

number of observation points are taken to be the same for all

the excitations. Thus, starting at the second line, ThereI
r should be NFLDS lines of incident field data and following

Sthi,3 NOBS lines tf observation point data

4
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a -1 wavelength

o a

y

x

Fig 5a. Conducting sphere used as a test case for results
presented in Fig. 6.
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Fig. 6: Bistatic scattering cr( s,.s-sect ion ofthe conduct ing
sphere illustrated in Fig 05a.
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Fig. 7: Bistatic scattering cross--section of conducting
cylinder of Fig. 5b.
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Computat ion

Matrix size time in cpu
Length of seconds on

Scatterer generating cray xmp-48
arc in
wavelengths

Sub EntirE Sub Entir
domain domain domain domain

Sphere 3.14159 61 24 7.834 15.335

Cylinderr 4.0 81 34 8.061 17.181

Table 1. Comparison of computation times and matrix sizes for
scattering problems using entire domain basis functions
and sub-domain basis functions.
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